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Jitter in Digital Communication Systems, Part 2

1 Introduction
A previous application note on jitter, HFAN-4.0.3
"Jitter in Digital Communication Systems, Part 1,"
defined jitter and its various sub-components. The
purpose of this application note is to answer the
question, "So now that we know what jitter is, why
should I care?" To answer this question, we will
explore some of the ways that jitter causes bit errors
in digital communication systems.

2 Background
A basic characteristic of digital communications
systems is the need for synchronization between the
binary encoded data (the bit stream) and the various
circuit elements in the transmitter and receiver. Bit
synchronization information is generally conveyed
separately in the transmitter and receiver by the bit
clock, which is a square wave signal that has a
frequency (in Hz) equal to the data rate (in bits per
second). The relationship between an NRZ encoded
bit stream and the bit clock is illustrated in Figure 1.

A fundamental problem is how to get the bit
synchronization information from the transmitter to
the receiver. In general, digital communication
systems transmit only the bit stream and then
regenerate the bit clock at the receiver through use
of a clock and data recovery (CDR) circuit such as
Maxim's MAX3873, MAX3875, or MAX3877.
Distortions and noise in the received bit stream as
well as imperfections in receiver bit clock

regeneration result in mistiming (jitter) between the
received bit stream and the regenerated bit clock that
can cause bit errors.

3 Receiver Decisions
The receiver in a digital communication system
(illustrated in Figure 2) is tasked with accurately
making two decisions: (1) when to sample the
received bit stream, and (2) whether the sampled
value represents a binary one or zero. The bit clock
controls the timing of the first decision. Jitter
between the bit clock and the bit stream may cause
the receiver to sample the bit stream at the wrong
time, which can result in bit errors.

To better understand the relationship between jitter
and the resulting bit errors, it is necessary to
understand the details of the two decisions made by
the receiver about each bit. We will first discuss the
second decision (one or zero?) and then come back
to the first decision (when to sample?).

3.1 The One or Zero Decision

The decision circuit in a basic receiver simply
compares the sampled voltage, v(t), to a reference
value, γ, called the decision threshold. If v(t) is
greater than γ, it indicates that a binary one was sent,
whereas if v(t) is less than γ, it indicates that  a
binary zero was sent. Assuming perfect
synchronization between the bit stream and the bit
clock, the major obstacle to making the correct
decision is noise in the received data.
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If we assume that additive white Gaussian noise
(AWGN) is the dominant cause of erroneous
decisions, then we can calculate the statistical
probability of making such a decision. The
probability density function for v(t) with AWGN can
be written mathematically as:
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where vS is the voltage sent by the transmitter (the
mean value of the density function), v(t) is the
sampled voltage value in the receiver at time, t, and
σ is the standard deviation of the noise. Equation (1)
is illustrated in Figure 3.
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where PROB[v(t),σx] is defined in equation (1).
This result is illustrated in Figure 4.
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From Figure 4 and equations (2) and (3) we can
conclude that the probability of error is equal to the
area under the tails of the density functions that
extend beyond the threshold, γ. This area, and thus
the bit error ratio (BER), is determined by two
factors: (1) the standard deviations of the noise (σ0

and σ1) and (2) the voltage difference between vS0

and vS1 (i.e., the signal-to-noise ratio).

It is important to note that for the special case when
σ0 = σ1, the threshold is halfway between the one
and zero levels (i.e., γ = (vS1−vS0)/2).  For the more
general case when σ0 ≠ σ1, the optimum threshold
for minimum BER will be higher or lower than
(vS1−vS0)/2. For optimum performance, then, the
decision circuit include an adjustable threshold level,
as in Maxim's MAX3877 and MAX3878.

To simplify computation of the probability of bit
error we can rewrite equation (3) in terms of the
error function, Er(x), which is defined as1:
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for a standard normal distribution (i.e., mean = 0, σ
= 1).  [Note that there are a number of variations of
this function published in the literature.] This
function gives the area under the tail of the Gaussian
probability density function (PDF) between x and
infinity. This form of the error function is useful
because numerical solutions are available in both
tabulated form1 and as built-in functions with many
software utilities (e.g., Er(x) = 1- NORMSDIST(x)
in Microsoft Excel). In terms of Er(x), equation (3)
can be rewritten as1 (see Maxim application note
HFAN-09.0.2 for more details on the derivation of
this equation):
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where [v1(t) - v0(t)]/(σ0 + σ1) represents the signal-
to-noise ratio (sometimes called the "Q-factor")2 and
v1(t), v0(t) are defined in Figure 5.

3.2 Timing of the Sampling Instant

In the receiver, the rising or falling edge of the
regenerated bit clock controls the timing of the

sampling circuit.  The sampling circuit compares the
instantaneous voltage of the input waveform to the
decision threshold at an instant in time we will call
the sampling instant to determine whether the
received signal represents a one (received signal > γ)
or a zero (received signal < γ). Jitter between the bit
clock and the bit stream may cause the sampling
instant to deviate from the ideal, which can in turn
influence the quality of the zero/one decision.

In the previous section it was shown that the
probability of making a correct decision is
determined by both the noises associated with the
input waveform (σ0 and σ1) and the difference
between the zero and one levels (vS1 - vS2). The
timing location of the sampling instant has no effect
on the noise, but it can affect the difference between
the zero and one levels and thereby increase the
probability of bit errors.

We can represent the timing of the sampling instant
by t<subscript>, as shown in Figure 5.
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4 Predicting the BER Caused
by Jitter

Some bit errors will occur in the absence of jitter
effects (i.e., even with optimum sampling), as a
consequence of amplitude noise. (This was
discussed in section 3.1). Jitter adds the dimension
of time to the problem of predicting the bit error
ratio (BER). When jitter is included in the analysis,
the calculated probability of bit error, P[ε], must take
into account the probability of bit error at each
potential sampling instant, P[ε | tS], as well as the
probability that each sampling instance actually
occurs, P[tS].

4.1 Probability of Error at Each
Sampling Instant

Equation (5) shows that probability of bit error, P[ε],
is determined by the signal amplitude, v1(t)-v0(t),
and the noise (σ0 and σ1).  The noise can be directly
measured and its magnitude typically stays constant
for long periods of time.  The sampled signal
amplitude, however, may vary depending on the
sampling instant. For example, the sampled signal
amplitude in Figure 5 will be different when the
signal is sampled at tB than when it is sampled at tA.
This means that P[ε] will be different, depending on
the sampling instant.

An example of the relationship between the
sampling instant and P[ε] is illustrated in Figures 6,
7, and 8. These figures are discussed in the
following paragraphs.

Figure 6(a) represents the eye diagram of the data
signal at the input to the sampling circuit in a typical
receiver (e.g., the "D" input of Figure 2). We will
define the jitter in this eye diagram as the time
difference between the data transitions (represented
by the zero crossings in the eye diagram) and the
corresponding transitions of the bit clock. For such a
case, the jitter can be visualized from either of two
perspectives: clock-referenced jitter or data-
referenced jitter. The clock-referenced perspective
involves fixing the horizontal position of the clock
and watching the relative horizontal movement of
the data eye diagram (this is commonly done in
practice by triggering an oscilloscope using the
clock signal). The data-referenced perspective can
be visualized as fixing the horizontal position of the
data eye diagram and watching the relative
horizontal movement of the clock signal (data-

referenced jitter). Both of these perspectives are
equivalent, but, for purposes of this example, it is
more convenient to use the data-referenced
perspective.

Using the data referenced perspective, we can
neglect jitter in the eye diagram of Figure 6 for now
(we will consider all the jitter to be associated with
the clock and analyze its effects later). We will,
however, assume that the data eye diagram contains
amplitude noise (σ0 and σ1). We will also assume
that we have measured σ0 and σ1 (one way to do this
is with the vertical histogram mode of the
oscilloscope), that they are Gaussian, statistically
independent, and that their magnitudes are constant.
We also note that the time between the zero
crossings represents one unit interval (UI), that the
rise and fall times are different, and that, in the
general case, there may be other distortions.

1 UI
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Figure 6. Computing P[ε] at each sampling instant
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Figure 6(b) is a plot of the eye diagram amplitude
difference, v1(t)-v0(t), versus time. This was
generated by subtracting the average value of v0(t)
from the average value of v1(t) at each point in time
within the UI. Outside of the UI, we will set the
amplitude difference to zero.

Figure 6(c) is a plot of the probability of bit error at
each sampling instant, P[ε | ts]. This plot shows the
probability that the bit will be erroneously detected
as a function of the sampling instant. Figure 6(c)
was generated by applying equation (5), using each
time instant in Figure 6(b) for the numerator of the
argument and, for purposes of this example, setting
σ0 + σ1 = 0.25.

The plot in Figure 6(c) is commonly called a "jitter
bathtub plot", and can be generated using the "BERT
Scan Technique3."  It is important to note, however,
that there are some key differences between the plot
of Figure 6(c) and the conventional jitter bathtub
plot. For example, Figure 6(c) was generated from a
jitter-free eye diagram and thus does not include any
jitter. The roll-off on the sides of the plot is due to
the non-zero rise and fall times and the asymmetry
between the two sides is due to the difference
between the rise and fall times.  Much of the jitter
bathtub plot analysis contained in the literature relies
on the assumption that the probability of bit error is
zero for all sampling instants within the UI and 50%
outside of the UI (i.e., infinitely short rise/fall times
and/or negligible amplitude noise). If this
assumption were true (i.e., P[ε] = 0 for all sampling
instants within the UI), then the sides of the jitter-
free bathtub plot would be vertical and the bottom of
the bathtub plot would be a horizontal line at a
probability of zero.

As an important side note, we notice that, as a
general rule, the left and right sides of any given
data eye diagram are not symmetrical. Because of
this asymmetry, as well as other factors such as the
setup and hold times of the receiver decision circuit,
it may be advantageous (i.e., improve the BER) to
shift the sampling time to a position other than the
center of the eye diagram. This can be done using
the phase-adjust feature of Maxim's MAX3877 and
MAX3878.

4.2 Sampling Time Probability

The sampling instant for each bit in any bit pattern is
determined by the timing relationship between the

data and the clock.  This relationship will vary from
one bit to the next, due to jitter. Using the data
referenced jitter perspective (described in the
previous section) the probability that the sampling
instant (i.e., clock transition) occurs at any given
time in the UI can be represented by a probability
density function (PDF)4 of the jitter. This PDF can
then be used in conjunction with the probability of
bit error at each sampling instant (Figure 6(c)) to
compute the overall probability of bit error.

Figure 7 is a modeled example of a sampling instant
PDF (i.e., jitter histogram) plotted on both linear and
logarithmic vertical scales. This PDF represents the
timing probability of the recovered bit clock relative
to the data at the input to the receiver sampling
circuit.

The key point to notice in Figure 7 is that, even
though it is highly probable that the bit will be
sampled in the vicinity of the center of the UI, there
is still a finite probability, due to jitter, that the bit
will be sampled in the vicinity of the bit transition or
beyond.

Figure 7. Sampling instant probability density
               function (PDF)
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4.3 BER due to Jitter

At this point we finally have all of the information
necessary to compute the bit error ratio (BER) due to
jitter. In order to do this, we can apply the statistical
definition of conditional probability5 to compute the
probability of bit error over the full range of
sampling times, as shown in the following equation:

     ][]|[],[ sss tPtPtP ×= εε (6)

In accordance with equation (6), we can do a point-
by-point multiplication of the jitter-free bathtub plot
of Figure 6(c) ( i.e., P[ε | ts] ) and sampling instant
PDF of Figure 7 ( i.e., P[ts] ).  The result is the total
probability of bit error distributed over the full range
of possible sampling time instants.  This result is
plotted in Figure 8. It is interesting to note from
Figure 8 that most of the of bit errors in this example
occur near the bit transition times, and that these
errors are caused by the relatively improbable
extremes in sampling instant deviation (i.e., jitter).

The cumulative P[ε] (i.e., BER) can be computed by
integrating the result of equation (6) with respect to
time:

     ∫
∞

∞−
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Numerical integration of the example plot of Figure
8 (i.e., the cumulative area under the curve) yields a
BER due to jitter of 3.27 × 10-5. This result is in
contrast to the jitter-free BER at the center of the
bathtub plot of Figure 6(c) of 9.27 × 10-14. (Jitter-
free BER assumes optimum sampling near the center
of the UI.)

5 Conclusions
Jitter can cause bit errors by shifting the bit sampling
instant away from the optimum position and into
regions of the bit time that are close to (or beyond)
the bit transition points (at the rising and falling
edges).  It is possible to predict the effect of jitter on
the system BER using measurements of the eye
diagram, noise, and jitter PDF.

The example jitter BER calculations outlined in this
application note show that there may be a significant
difference in results depending on whether jitter is
considered. (Note: The examples herein include
intentionally exaggerated noise and jitter amplitudes
in order to more effectively illustrate the manner in
which jitter affects BER.) Some important
observations are as follows:

1. If the jitter is small enough, the resulting timing
deviations of the sample clock will be confined to
the "stable region" of the bit period (defined in
Figure 5), in which case the jitter will have no effect
on the BER.

2. The stable region of the bit period can be
increased (and thus susceptibility to jitter decreased)
by decreasing the rise and fall times and/or
decreasing the noise.

3. Some of the existing literature on jitter utilizes
unwritten assumptions that rise/fall times are
infinitely short, that there is no amplitude noise,
and/or that there is no distortion inherent in the eye
diagram. In order to make accurate predictions of
jitter BER, it is important to consider these effects.
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